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Abstract

The magnetization ripple amplitudes from a pulse designed by the Shinnar-Le Roux algorithm are a non-linear function of the Shin-
nar-Le Roux A and B polynomial ripples. In this paper, the method of Pauly et al. [J. Pauly, P. Le Roux, D. Nishimura, A. Macovski,
Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Transactions on Medical Imaging 10
(1991) 56–65.] has been extended to derive more general parameter relations. These relations can be used for cases outside the five classes
considered by Pauly et al., in particular excitation pulses for flip angles that are not small or 90�. Use of the new relations, together with
an iterative procedure to obtain polynomials with the specified ripples from the Parks–McClellan algorithm, are shown to give simulated
slice profiles that have the desired ripple amplitudes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The design of selective excitation pulses has been greatly
simplified by the Shinnar-Le Roux (SLR) algorithm [1–5]. In
the algorithm, the RF pulse is first approximated as a series
of hard pulses, each giving rise to a small rotation of the
magnetization vector. Via the spinor notation, the total
rotation caused by the pulse can be described by two z-trans-
form polynomials, usually referred to as the SLR A and B

polynomials [5]. This is known as the forward SLR trans-
form. The reverse procedure is the inverse SLR transform,
which generates the required RF pulse from given A and B

polynomials, designed according to the desired slice profile.
Pauly et al. described a method of obtaining the

required polynomials using filter design and the Parks–
McClellan (PM) algorithm [5]. First, the slice profile is
characterized by stop and pass bands. From the stopband,
passband, and amplitude ripples in each band, the transi-
tion width is estimated, and these parameters are passed
to the PM algorithm. The algorithm returns a polynomial
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with an equi-ripple response which, after scaling, is taken
as the B polynomial. Next, the A polynomial is derived
from the B polynomial. Given the A and B polynomials,
the RF pulse is obtained through the inverse SLR trans-
form. Unfortunately, the magnetization ripple amplitudes
in the slice profile, de, are a non-linear function of the poly-
nomial ripple amplitudes, d. The relationship between de

and d was derived in Pauly et al. for five types of pulses:
small-tip-angle and 90� excitation pulses, inversion pulses,
crushed spin–echo, and 90� suppression pulses. These are
reproduced in Table 1 and will be referred to as the Pauly
parameter relations.

While these expressions are very useful, they do not
cover the entire range of flip angles, and may not be opti-
mal for certain cases. For example, neither the small-tip-
angle or 90� relations for excitation pulses are exactly right
for a flip angle of say, 70�. In their paper, Raddi and Klose
[6] observed that this lack of a general parameter relation
for different flip angles led Matson, in his public-domain
software MATPULSE [7], to use the Pauly relations out-
side their design range; for example, using the 90� relation
for excitation pulses with / = 45–135�. Raddi and Klose
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Table 1
Exact and Pauly parameter relations for various RF pulses

Pulse type Parameter of interest Pauly relations Exact relations

de
1 de

2 de
1 de

2

Small-tip-angles Mxy d1 d2 Eq. (11) Eq. (12)

90� Mxy 2d2
1

ffiffiffi
2
p

d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ð1þ d1Þ2

q
ð1þ d1Þ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d2

2

q
d2

Inversion Mz 8d1 2d2
2 8d1/(1 + d1)2 2d2

2=ð1þ d1Þ2

Crushed spin–echo Mxy 4d1 d2
2 4d1/(1 + d1)2 d2

2=ð1þ d1Þ2

Suppression Mz 2d1 d2
2 2d1 þ d2

1 d2
2
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derived approximate parameter relations for transverse
and longitudinal magnetization, before combining them
to produce a generalized parameter relation between poly-
nomial and magnetization ripple. This generates a weighted
value of d dependent on flip angle only, regardless of pulse
type. The limitation of this approach is that the parameter
of interest is often either the transverse ripple or the longi-
tudinal ripple. For the inversion and suppression pulses,
the longitudinal ripple is estimated, whereas for the excita-
tion and spin–echo pulses it is the transverse ripple that is
estimated. Combining both may in certain cases be sub-
optimal. The most satisfactory approach is to use more
general parameter relations pertaining to the transverse
or longitudinal ripple, but covering a wider range of angles.

Pauly et al. did not use the same approach in deriving
the relations for the different pulse types. For excitation
pulses, a geometrical argument was used, while a more gen-
eral approach was used for the other pulse types. The gen-
eral approach is straightforward, and when applied to the
excitation pulses, gives the required general parameter
relations.

2. Method

The forward SLR transform on a pulse comprising n

hard pulses separated in time by nt, applied during a slice
select magnetic field gradient G, results in the two z-trans-
form polynomials of order n � 1, the A and B polynomials
[5]. Their magnitudes are related by:

jAnj2 þ jBnj2 ¼ 1 ð1Þ

The A and B polynomials can be used to calculate a Bloch
simulation of the pulse on magnetization (Mx,My,Mz) (if
relaxation can be ignored), through the following matrix
equation [6]:

Mþ
xy

Mþ�
xy

Mþ
z

0
B@

1
CA ¼

z�nðA�nÞ
2 �z�nB2

n 2A�nB

�z�nðB�nÞ
2 znA2

n 2AnB�n
�z�nA�nB�n �znAnBn 1� 2BnB�n

0
B@

1
CA

M�
xy

M��
xy

M�
z

0
B@

1
CA

ð2Þ

where z = eicGxnt, Mxy = Mx + iMy, and the � and +
superscripts denote ‘before’ and ‘after’ the pulse.

If the initial magnetization is in the z-direction only, as is
usual when considering excitation pulses, then:
Mþ
xy ¼ 2A�nBnM�

z ð3Þ
Mþ

z ¼ ð1� 2BnB�nÞM�
z ð4Þ

If the initial magnetization is in the y-direction, as is usual
when considering spin–echo pulses, then the magnitude
slice profile after a spin–echo pulse surrounded by crusher
gradients is given by [5]:

jMþ
xy j ¼ jB2

nM�
y j ð5Þ

Given the specifications for the ripple inside the passband
d1, ripple in the stopband d2, pulse duration and slice
width, the optimum transition width W is obtained via
an empirically derived formula (Eq. (20) in Ref. [5]). The
parameters d1, d2 and W are passed as inputs into the
PM algorithm, which then returns a polynomial with an
equi-ripple response in the pass and stop bands, normal-
ized to have an average value of 1 in the passband
(Fig. 6 in Ref. [5]). When correctly scaled, this polynomial
is taken as the B polynomial. This also determines the mag-
nitude of the A polynomial through Eq. (1).

The rules for scaling are as follows: for flip angles / such
that j(1 + d1)sin(//2)j 6 1, the polynomial is scaled by mul-
tiplying with the factor i sin(//2). This gives, for instance,
the usual Mþ

xy ¼ M�
z sin / and Mþ

z ¼ M�
z cos / as the aver-

age in-slice magnetization. After scaling, the magnitude
of the passband maximum becomes (1 + d1)sin(//2) and
that of the stopband becomes d2sin(//2). This factor can-
not be used where j(1 + d1)sin(//2)j > 1 because from Eq.
(4) or (5), after scaling, the maximum value of the B poly-
nomial results in jMj > 1, which is physically incorrect.
Instead, the polynomial is scaled by multiplying with
i/(1 + d1) to make the maximum jBnj = 1. For example,
in the case of / = 180�, where the condition is always true,
the magnitude of the minimum in the passband becomes
(1 � d1)/(1 + d1), and the magnitude of the maximum in
the stopband becomes d2/(1 + d1).

These maximum (or minimum) and average values can
now be simply substituted into Eqs. (3)–(5) and subtracted
from each other to give the ripples in the magnetization
component of interest. Essentially, this was how Pauly
et al. derived the parameter relations for inversion, crushed
spin–echo and 90� suppression pulses. As an example, the
derivation is repeated here for the in- and out-slice ripples,
de

1 and de
2, of a suppression pulse. It differs from the original

in that this result applies not only to / = 90�, but more



Fig. 1. jde
1j (normalized to average in-slice magnetization) as a function of

flip angle and d1.
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Fig. 2. jde
2j (normalized to average in-slice magnetization) as a function of

flip angle and d2.
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generally, where / is such that j(1 + d1)sin(//2)j 6 1. The
parameter of interest is Mz; using Eq. (4):

de
1 ¼ Mþ

z;max �Mþ
z;ave

¼ 1� 2ð1þ d1Þ2 sin2ð/=2Þ
h i

� 1� 2 sin2ð/=2Þ
� �

¼ 2 sin2ð/=2Þ �d2
1 � 2d1

� �
ð6Þ

Note that M�
z has been set to 1 for convenience. Similarly

for out-slice ripple:

de
2 ¼ Mþ

z;max �Mþ
z;ave ¼ 1� 2d2

2 sin2ð/=2Þ
� �

� 1

¼ �2d2
2 sin2ð/=2Þ ð7Þ

In the case considered by Pauly et al., of / = 90�,

de
1 ¼ �d2

1 � 2d1 ð8Þ
jde

1j � 2d1 ð9Þ

and

jde
2j ¼ d2

2 ð10Þ

which are the Pauly parameter relations of Table 1.
This approach was not used by Pauly et al. for excitation

pulses, where a geometrical approach was used instead.
Furthermore, only expressions for small flip angles and
90� were derived. However, by using the general approach,
exact expressions applicable to a wider range of angles may
be obtained. The parameter of interest is now taken to be
the ripple amplitude in the transverse magnetization; the
derivation above is repeated, but with Mxy. Only the case
of flip angle for which j(1 + d1)sin(//2)j 6 1 is relevant
practically as the other case corresponds to little or no
transverse magnetization:

jdej ¼ Mþ
xy;max �Mþ

xy;ave

� �
=Mþ

xy;ave

			
			

jde
1j ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ d1Þ2 sin2ð/=2Þ

q
ð1þ d1Þ sinð/=2Þ � sin /

sin /

						

						
ð11Þ

jde
2j ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

2 sin2ð/=2Þ
q

d2 sinð/=2Þ
sin /

						

						
ð12Þ

The sign change in Eq. (11) takes into account the change
from / < 180� to >180�, and the expressions have been
normalized to the average in-slice magnetization.

In the case of / = 90�, these equations reduce to:

jde
1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ð1þ d1Þ2

q
ð1þ d1Þ � 1

				
				 ð13Þ

jde
2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d2

2

q
d2

				
				 ð14Þ

By repeating the derivation for the other cases considered
by Pauly et al., the corresponding exact expressions were
obtained and are reproduced in Table 1. Note that, follow-
ing Pauly et al., the definition of ripple in inversion and
crushed spin–echo cases differs slightly from the other cases
in that: de ¼ jMþ

max �Mþ
minj instead of jMþ

max �Mþ
avej.

Eqs. (11) and (12) can be graphed (see Figs. 1 and 2) and
inverted numerically. In Fig. 3, the exact in-slice parameter
relation for an excitation pulse is graphed for / = 70�, and
compared with the Pauly relations for small-tip-angle and
90�. Note that the exact parameter relation is not symmet-
ric: as the flip angle approaches 90�, the positive ripple con-
tributes less to the magnetization ripple. In this case of /
6 90�, the maximum in-slice ripple de

1 is obtained by con-
sidering the negative d1.

Given the parameter relations in Table 1, it is still neces-
sary to generate polynomials with the required d1,2. It was
found that using the ripple and transition width suggested
in Ref. [5] for inputs into the PM algorithm often gave rip-
ple amplitudes that did not match the specified ripples.
Therefore, the input ripples into the PM algorithm were
refined iteratively, until a match was obtained. For exam-
ple, suppose the initial d2 input results in a polynomial



Fig. 3. Comparison of parameter relations for jde
1j at / = 70�: general (solid), Pauly small-tip-angle (dotted), Pauly 90� (dashed).

Table 2
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ripple that is too small. The input d2 is incremented by a
small value (a thousandth of the initial value was used).
Next, in an inner iterative loop, the MATLAB routine
remezord, which uses the same estimate as used in Ref.
[5], is used to find the minimum transition width consistent
with the incremented d2 (plus unchanged input d1) and the
order of the polynomial. In effect, the width of the transi-
tion band is altered to obtain the required ripple ampli-
tudes. These values are passed to the PM algorithm and
the d2 from the resulting polynomial measured. In this
way, the input d2 is slowly increased (with the minimum
W found at each stage) until the measured d2 is within
1% of the desired value. Finally, the input d1 is adjusted
in the same way. Following adjustment of d1, d2 will not
necessarily still be correct, but it was usually found to be
near enough. For the results below, d1 and d2 were each
refined only once.

The algorithms were implemented using locally devel-
oped code in MATLAB. Within MATLAB, the PM algo-
rithm was implemented using the remez function from the
Signal Processing Toolbox Version 6.0(R13). Excitation
pulses were designed using d’s obtained using the general
parameter relations and iterative refinement of ripple
amplitudes, and their slice profiles were compared to those
obtained using the method and relations described by
Pauly et al. [5].
Parameters for 70� excitation pulse, showing inputs into PM algorithm,
and resulting (normalized) magnetization ripples

Input Output

W (%) d1 (%) d2 (%) de
1 (%) de

2 (%)

General 23 1.51 0.64 0.97 0.99
Small-tip-angle 23 1.00 1.00 0.63 1.51
90� 17 7.07 0.71 3.90 0.94
3. Results

Results for two excitation pulse examples are presented.
For a flip angle of 70�, slice thickness = 2 kHz, ripple
amplitudes = 1% for both d1,2, and pulse duration 4 ms,
defined over 100 points, generalized relations gave:
d1 = 0.0190, d2 = 0.0081. Initial use of the PM algorithm
with these and the optimum transition width W = 21%
(via Eq. (21) in Ref. [5]) resulted in a polynomial with
d1 = 0.0247, d2 = 0.0106, which were unsatisfactory. Input
d’s were iteratively refined to d1 = 0.0151, d2 = 0.0064, and
W = 23%, which gave the required ripples. Table 2 shows
these input parameters together with those from Pauly
small-tip-angle and 90� excitation. Table 2 also shows the
magnetization ripples obtained from Bloch simulation of
the resulting pulses, using the public-domain software
MATPULSE [7]. Figs. 4 and 5 show the simulated in-slice
and out-slice profiles of the three designs—using general-
ized relations gives almost exactly the required ripples.

For a flip angle of 110�, but with other parameters
unchanged from above, generalized relations gave:
d1 = 0.0091, d2 = 0.0057. With these values and the opti-
mum W = 25%, the PM algorithm gave a frequency
response with d1 = 0.0120, d2 = 0.0076, which were also
unsatisfactory. Refinement of ripples gave d1 = 0.0091,
d2 = 0.0058, obtained with inputs of d1 = 0.0071,
d2 = 0.0044, and W = 27%. The simulated magnetization
was compared with that obtained using the 90� relation.
Results are summarized in Table 3. Figs. 6 and 7 show
the simulated in-slice and out-slice profiles. The values in
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Fig. 4. In-slice magnetization ripple at / = 70�: general relation (solid), Pauly small-tip-angle (dotted), Pauly 90� (dashed).
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Fig. 5. Out-slice magnetization ripple at / = 70�: general relation (solid), Pauly small-tip-angle (dotted), Pauly 90� (dashed).

Table 3
Parameters for 110� excitation pulse, showing inputs into PM algorithm,
and resulting (normalized) magnetization ripples

Input Output

W (%) d1 (%) d2 (%) de
1 (%) de

2 (%)

General 27 0.71 0.44 0.98 1.00
90� 17 7.07 0.71 5–12 1.35
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the transition band cannot be controlled, but outside it, the
generalized relations give the required ripple.

4. Discussion and conclusion

In the pulse design method of Pauly et al., the resulting
magnetization ripple is determined by two stages: first, the
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Fig. 6. In-slice magnetization ripple at / = 110�: general relation (solid), Pauly 90� (dashed).
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Fig. 7. Out-slice magnetization ripple at / = 110�: general relation (solid), Pauly 90� (dashed).
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relations between the polynomial and magnetization ripple,
and second, the generation of a polynomial with the
required ripple. In this paper, the method of Pauly et al.
has been extended to obtain exact parameter relations for
a wider range of angles. Although the extension is straight-
forward, it does not appear to be widely known. The expres-
sions derived in this way in Table 1 can be shown to be very
nearly equal to the Pauly relations, and therefore it might
not seem advantageous to have the more exact formulas.
However, they are useful for the class of excitation pulses
that were not considered in Ref. [5] i.e., those with flip
angles not limited to small angles or 90�. They might also
be useful, for example, where transmit pulse amplitude var-
iation results in a range of flip angles. The resulting general
relations are more cumbersome than the Pauly relations,
but they are simple to invert numerically.

The polynomials generated by the PM algorithm were
often found not to have the specified ripples. Thus, a
heuristic method of adjusting the input parameters of the
PM algorithm was used to obtain polynomials with the
desired d’s. This, in combination with the new relations,
produced magnetization ripples that match almost exactly
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the required ripples, and show an improvement in perfor-
mance compared with the Pauly relations for flip angles
not previously considered in Ref. [5]. However, as there
is an inverse relationship between ripple magnitude and
transition width, achieving the correct ripple may be at
the cost of increasing the transition width.
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